Elements of Permafrost Science

Photo Credit

The Norwegian-Canadian Frozen Canoes project in educational initiatives for permafrost science and engineering was completed in December 2022, after five years of support from the Research Council of Norway. The project produced a series of short instructional videos on Elements of Permafrost Science, suitable for students studying permafrost science or engineering for the first time, or for people who need to review their background in the ground thermal regime, the development of ground ice, and applications of these themes to the permafrost environment. The videos were produced at Carleton University, Ottawa, ON. Two sets of videos have been prepared. The first are short, four-minute episodes that summarize a topic and provide one or two key references for the viewer to pursue off-line. There are 30 of these little units. The second are 10-15 minute programs that discuss the topics in more detail. There are 25 of these videos which are openly accessible on the Canadian Permafrost Association (CPA) website. Links to these videos are available below.


These materials aim to summarize some of the basic ideas and information you may need to understand the behaviour and sensitivity of permafrost terrain. The videos are organized into 3 modules each containing 8 lectures and a short summary video. 

  • 1.0 Introduction (03:27)

Module 1: The Ground Thermal Regime

This module focuses on the ground thermal regime – the temperatures observed within the ground and how they vary over the year.

  • 1.1 Definitions and Distribution of Permafrost (03:57)
  • 1.2 Continental Climate and Permafrost (03:53)
  • 1.3 Permafrost Thickness (03:49)
  • 1.4 Permafrost and Microclimate (04:16)
  • 1.5 Thermal Regime of the Active Layer (03:44)
  • 1.6 Surface and Thermal Offsets (03:52)
  • 1.7 Ground Temperature Envelope (03:49)
  • 1.8 Aggradation and Degradation of Permafrost (03:45)
  • 1.9 Ground Thermal Regime Summary (04:07)

Module 2: Ground Ice Characteristics and Development

  • 2.1 Freezing of Sands (03:31)
  • 2.2 Development of Pingo Ice (03:54)
  • 2.3 Intrusive Ice (03:44)
  • 2.4 Freezing Characteristic Curves (04:15)
  • 2.5 Ice Segregation (04:17)
  • 2.6 Massive Icy Beds (03:48)
  • 2.7 Ice Wedges (03:53)
  • 2.8 Buried Ice (03:25)
  • 2.9 Ground Ice Characteristics and Development Summary (04:54)

Module 3: Permafrost Geoscience

  • 3.0 Summary Video (03:32)
  • 3.1 Aggradational Ice (03:54)
  • 3.2 Cryoturbation (03:12)
  • 3.3 Permafrost Carbon (03:20)
  • 3.4 Ice-Wedge Polygons (02:59)
  • 3.5 Thaw Subsidence (03:33)
  • 3.6 Thermokarst Lakes (03:26)
  • 3.7 Thaw Slumps (03:22)
  • 3.8 Permafrost and Climate Change (04:04)
  • 3.9 Climate Change, Permafrost, and Infrastructure (03:14)
  • 3.10 Summary Notes in Permafrost Science: Conclusion (03:49)


  • Ballantyne, C.K. (2018). Periglacial Geomorphology. Wiley, 454 p.
  • Brown, R.J.E. (1960). The distribution of permafrost and its relation to air temperature in Canada and the U.S.S.R. Arctic, 13(3):163-177. DOI: 10.14430/arctic3697.
  • Burn, C.R. (2004). The thermal regime of cryosols. Ch. 3, pp. 391-413 in Cryosols – Permafrost-affected soils. Edited by J.M. Kimble. Springer: Berlin. DOI: 10.1007/978-3-662-06429-0_19.
  • Burn, C.R. (2011). Permafrost distribution and stability. Ch. 7, pp. 126-146 in Changing Cold Environments – A Canadian Perspective. Edited by H.M. French and O. Slaymaker. John Wiley & Sons Ltd: New York. DOI: 10.1002/9781119950172.ch7.
  • Burn, C.R., and Smith, M.W. (1990). Development of thermokarst lakes during the holocene at sites near Mayo, Yukon territory. Permafrost and Periglacial Processes, 161-176. DOI: 10.1002/ppp.3430010207.
  • Burn, C.R., Moore, J.L., O’Neill, H.B., Hayley, D.W., Trimble, J.R., Calmels, F., Orban, S.N., and Idrees, M. (2015). Permafrost characterization of the Dempster Highway, Yukon and Northwest Territories. Paper 705. Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference, 21-23 September 2015, Quebec City, QC, Canada, Canadian Geotechnical Society, Richmond, BC. 8 p.
  • Burn, C.R., Lewkowicz, A.G., and Wilson, M.A. (2021). Long-term field measurements of climate-induced thaw subsidence above ice wedges on hillslopes, western Arctic Canada. Permafrost and Periglacial Processes, 32(2):261-276. DOI: 10.1002/ppp.2113.
  • Burn, C.R., and Lewkowicz, A.G. (2022). Permafrost geomorphology. Geological Society, London, Memoirs, 58:13-332. DOI: 10.1144/M58-2022-11.
  • Burt, T.P. and Williams, P.J. (1976). Hydraulic conductivity in frozen soils. Earth Surface Processes, 349-360.
  • Bush, E., and Lemmen, D.S. (2019). Canada’s Changing Climate Report. Government of Canada, Ottawa, ON. 444 p.
  • Canadian Standards Association (2019). Technical Guide: Infrastructure in permafrost: A guide for climate change adaptation. CSA PLUS 4011:19, Toronto: CSA Group. 91 p.
  • Fritz, M., Wetterich, S., Meyer, H., Schirrmeister, L., Lantuit, H., and Pollard, W.H. (2011). Origin and characteristics of massive ground ice on Herschel Island (western Canadian Arctic) as revealed by stable water isotope and Hydrochemical signatures. Permafrost and Periglacial Processes, 22(1):26-38. DOI: 10.1002/ppp.714.
  • Hallet, B., Prestrud Anderson, S., Stubbs, C.W., and Gregory, E.C. (1988). Surface soil displacements in sorted circles, western Spitzbergen. In Proceedings of the Fifth International Conference on Permafrost, 2-5 August 1988, Trondheim, Norway, Tapir, vol. 1:770-775.
  • Heginbottom, J.A., Dubreuil, M.A., and Harker, P.T. (1995). Canada, permafrost. The National Atlas of Canada; Natural Resources Canada, Geomatics Canada, MCR Series no. 4177. DOI: 10.4095/294672.
  • Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C., and Yu., Z. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. PNAS, 117(34):20438-20446. DOI: 10.1073/pnas.1916387117.
  • Jorgenson, M.T., Shur, Y.L., and Pullman, E.R. (2006). Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33(2):L02503. DOI: 10.1029/2005GL024960.
  • Judge, A.S. (1973). The prediction of permafrost thickness. Canadian Geotechnical Journal, 10(1):11. DOI: 10.1139/t73-001.
  • Kokelj, S.V., Tunnicliffe, J., Lacelle, D., Lantz, T.C., Chin, K.S., and Fraser, R. (2015). Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global and Planetary Change, 129, 56-68. DOI: 10.1016/j.gloplacha.2015.02.008.
  • Kokelj, S.V., Lantz, T.C., Tunnicliffe, J., Segal, R., and Lacelle, D. (2017). Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. The Geological Society of America, 45(4):371-374. DOI: 10.1130/G38626.1.
  • Lachenbruch, A.H., and Marshall, B.V. (1986). Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science, 234(4777):689-696. DOI: 10.1126/science.234.4777.689.
  • Lachenbruch, A.H., Cladouhos, T.T., and Saltus (1988). Permafrost Temperature and the Changing Climate. In Proceedings of the Fifth International Conference on Permafrost, 2-5 August 1988, Trondheim, Norway, Tapir, vol. 3:9-17.
  • Lewkowicz, A.G., and Way. R.G. (2019). Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature Communications, 10:1329. DOI: 10.1038/s41467-019-09314-7.
  • Mackay, J.R. (1970). Disturbances to the tundra and forest tundra environment of the western Arctic. Canadian Geotechnical Journal, 7(4):420-432. DOI: 10.1139/t70-054.
  • Mackay, J.R. (1974). Ice-Wedge Cracks, Garry Island, Northwest Territories. Canadian Journal of Earth Sciences, 11(10):1366-1383. DOI: 10.1139/e74-133.
  • Mackay, J.R. (1978). Sub-pingo water lenses, Tuktoyaktuk Peninsula, Northwest Territories. Canadian Journal of Earth Sciences, 15(8):1219-1227. DOI: 10.1139/e78-130.
  • Mackay, J.R. (1979). Pingos of the Tuktoyaktuk Peninsula area, Northwest Territories. Géographie physique et Quaternaire, 33(1):3-61. DOI: 10.7202/1000322ar.
  • Mackay, J.R. (1980). The origin of hummocks, western Arctic coast, Canada. Canadian Journal of Earth Sciences, 27(8):996-1006. DOI: 10.1139/e80-100.
  • Mackay, J.R. (1981). Active layer slope movement in a continuous permafrost environment, Garry Island, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 18:1666-1680. DOI: 10.1139/e81-154.
  • Mackay, J.R. (1983). Downward water movement into frozen ground, western arctic coast, Canada. Canadian Journal of Earth Sciences, 20(1):120-134. DOI: 10.1139/e83-012.
  • Mackay, J.R. (1990). Seasonal growth bands in pingo ice. Canadian Journal of Earth Sciences, 27(8):1115-1125. DOI: 10.1139/e90-116.
  • Mackay, J.R. (1990). Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafrost and Periglacial Processes, 15-29. DOI: 10.1002/ppp.3430010104.
  • Mackay, J.R. (1992). The frequency of ice-wedge cracking (1967–1987) at Garry Island, western Arctic coast, Canada. Canadian Journal of Earth Sciences, 29(2):236-248. DOI: 10.1139/e92-022.
  • Mackay, J.R. (1995). Ice wedges on hillslopes and landform evolution in the late Quaternary, western Arctic coast, Canada. Canadian Journal of Earth Sciences, 32(8):1093-1105. DOI: 10.1139/e95-091.
  • Mackay, J.R. (1998). Pingo growth and collapse, Tuktoyaktuk Peninsula area, western Arctic coast, Canada: a long-term field study. Géographie physique et Quaternaire, 52(3):271-323. DOI: 10.7202/004847ar.
  • Mackay, J.R. (2000). Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study. Géographie physique et Quaternaire, 54:41-68. DOI: 10.7202/004846ar.
  • Mackay, K.R. Ostrick, J., Lewis, C.P., and MacKay, D.K. (1979). Frost heave below 0°C ground temperature, Inuvik, Northwest Territories. In Current Research, Part A. Geological Survey of Canada, Paper 79-1A, 403-405. DOI: 10.4095/104879.
  • Mackay, J.R. and Dallimore, S.R. (1992). Massive ice of the Tuktoyaktuk area, western Arctic coast, Canada. Canadian Journal of Earth Sciences, 29(6):1235-1249. DOI: 10.1139/e92-099.
  • Mitchell, J.K. (1976). Fundamentals of Soil Behavior. Wiley, New York, USA, p. 422.
  • Natali, S.M. et al. (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 9:852-857.
  • Pollard, W.H. and French, H.M. (1984). The groundwater hydraulics of seasonal frost mounds, North Fork Pass, Yukon Territory. Canadian Journal of Earth Sciences, 21(10):1073-1081. DOI: 10.1139/e84-112.
  • Prest, V.K., Grant, D.R., and Rampton, V. (1968). Glacial Map of Canada. Map 1253A, scale 1:5000000, Geological Survey of Canada. DOI: 10.4095/108979
  • Romanovsky, V.E., and Osterkamp, T.E. (1995). Interannual variations of the thermal regime of the active layer and near‐surface permafrost in northern Alaska. Permafrost and Periglacial Processes, 6:313-335. DOI: 10.1002/ppp.3430060404.
  • Roy-Leveillee, P., and Burn, C.R. (2017). Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. Journal of Geophysical Research: Earth Surface, 122(5):1070-1089. DOI: 10.1002/2016JF004022.
  • Schuur, T. (2019). Permafrost and the Global Carbon Cycle. NOAA Arctic Report Card 2019, 58-65.
  • Shur, Y., Hinkel, K.M., and Nelson, F.E. (2005). The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes, 16(1):5-17. DOI: 10.1002/ppp.518.
  • Smith, M.W. (1975). Microclimatic Influences on Ground Temperatures and Permafrost Distribution, Mackenzie Delta, Northwest Territories. Canadian Journal of Earth Sciences, 12(8):1421-1438. DOI: 10.1139/e75-129.
  • Smith, M.W. (1985). Observations of soil freezing and frost heave at Inuvik, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 22(2):283-290. DOI: 10.1139/e85-024.
  • Smith, M.W., and Riseborough, D.W. (1996). Permafrost monitoring and detection of climate change. Permafrost and Periglacial Processes, 7:301-309. DOI: 10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2-R.
  • Weller, G., and Holmgren, B. (1974). The Microclimates of the Arctic Tundra. Journal of Applied Meteorology, 13(8):854-862. DOI: 10.1175/1520-0450(1974)013<0854:TMOTAT>2.0.CO;2.
  • Williams, P.J. and Smith, M.W. (1989). The Frozen Earth: Fundamentals of Geocryology, Cambridge University Press, Cambridge, 306 p. DOI: 10.1017/CBO9780511564437.